Granular axial band formation in rotating tumblers: a discrete element method study
نویسندگان
چکیده
The onset mechanism for band formation of a granular mixture in long rotating tumblers is still largely unresolved. We study this issue for axial segregation of binary mixtures having different size particles, using discrete element method simulations. Endwalls initiate axial segregation via an axial flow due to friction. The non-uniform distribution of axial velocity in the flow together with simultaneous radial segregation via percolation results in the axial flow rate of the two types of particles differing in the upstream and downstream portions of the flowing layer. Thus, small particles are driven further from the endwalls, while large particles accumulate at the endwalls. Once this occurs, a cascading mechanism begins so that other bands form due to the gradient in particle concentration near the endwalls. A small axial flow between segregated bands of small and large particles persists even after the bands are fully developed. S Online supplementary data available from stacks.iop.org/NJP/13/055021/ mmedia 4 Author to whom any correspondence should be addressed. New Journal of Physics 13 (2011) 055021 1367-2630/11/055021+25$33.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
منابع مشابه
Onset mechanism for granular axial band formation in rotating tumblers.
The mechanism for band formation of a granular mixture in long rotating tumblers is unresolved 70 years after the phenomenon was first observed. We explore the onset mechanism for axial segregation of a bidisperse mixture of particles of different sizes using the discrete element method. End walls initiate axial band formation via an axial flow due to friction at the end walls. The nonuniform d...
متن کاملAxial band scaling for bidisperse mixtures in granular tumblers.
Axial banding in rotating tumblers has been experimentally observed, but the dependence of band formation on the relative concentration of the bidisperse particles has not been thoroughly examined. We consider axial band formation and coarsening for dry and liquid granular systems of bidisperse mixtures of glass beads where the small particle volume fraction ranges from 10% to 90% in half-fille...
متن کاملSubsurface granular flow in rotating tumblers: a detailed computational study.
To better understand the subsurface velocity field and flowing layer structure, we have performed a detailed numerical study using the discrete element method for the flow of monodisperse particles in half-full three-dimensional (3D) and quasi-2D rotating tumblers. Consistent with prior measurements at the surface, a region of high speed flow with axial components of velocity occurs near each e...
متن کاملSlow axial drift in three-dimensional granular tumbler flow.
Models of monodisperse particle flow in partially filled three-dimensional tumblers often assume that flow along the axis of rotation is negligible. We test this assumption, for spherical and double cone tumblers, using experiments and discrete element method simulations. Cross sections through the particle bed of a spherical tumbler show that, after a few rotations, a colored band of particles...
متن کاملTransition to centrifuging granular flow in rotating tumblers: a modified Froude number
Centrifuging of granular material in a partially filled rotating circular tumbler occurs when particles are flung outward to form a ring of particles at the periphery of the tumbler rotating as a solid body. The critical rotation speed for centrifuging was studied experimentally in a quasi-two-dimensional tumbler as a function of particle diameter, tumbler fill fraction and interstitial fluid. ...
متن کامل